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Curse of dimensionality

• Several challenges in dealing with 
high dimensional data

• Model performance reduces
• In several cases, #samples < 

#dimensions 

• All distances become similar in high 
dimensions

• There can be noisy features 
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Accuracy decreases as the dimensionality increases. 
2 class classification accuracy of SVM classifier 
applied on 200 samples data (80% training) as the 
dimensionality increases. Classes are Gaussian with 
means at 0 and 1 and identity covariance.



Dimensionality reduction

• Solution: Remove some features using domain knowledge
• Might lose out on useful information

• Another option: Remove dimension that carries lesser information

• Different dimensions have different amount of information
• Maybe we can remove the dimension which has lesser information?

• These “dimensions” are inherent in the data and may not always 
align with the dimensions represented by the features

• That way, number of dimensions is reduced while minimizing the loss 
of information 
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Coordinates recap

• The vector (point) 𝑎 is in a 2-D 
space: 𝑎 = 1,1 𝑇

• Unit vector corresponding to 𝐱𝟏
axis: 𝐱𝟏 = 1,0 𝑇

• Unit vector corresponding to 𝐱𝟐
axis: 𝐱𝟐 = 0,1 𝑇

• Any point in the space can be 
given as weighted sum of vectors 
𝐱𝟏 and 𝐱𝟐
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There can be other axes too…

• Point 𝑎 has an equivalent representation for choice of axes 𝐱𝟏
′ , 𝐱𝟐

′ and (𝐱𝟏
′′, 𝐱𝟐

′′)

• The other axes are obtained by rotating (𝐱𝟏, 𝐱𝟐) around the origin

• All other such axes-pairs obtained by rotation (𝐱𝟏, 𝐱𝟐) are valid axes

MLSC20 KVS 5

𝐱𝟏

0
1

𝑎

(1,1)

𝐱𝟐

1
0

𝑎

𝐱𝟏

𝐱𝟐

𝐱𝟐
′

𝐱𝟏
′

3/2
1/2

−1/2

3/2 (1,1)

𝐱𝟏

𝐱𝟐

𝑎(1,1)

3 + 1

2
,
3 − 1

2

𝐱′𝟐
′

𝐱𝟏
′′

( 2, 0)

1/ 2

1/ 2

−1/ 2

1/ 2



There can be other axes too…

• The other axes are obtained by rotating (𝐱𝟏, 𝐱𝟐) around the origin

• All other such axes-pairs obtained by rotation (𝐱𝟏, 𝐱𝟐) are valid axes

• The rotated pairs are also valid ‘dimensions’ of the data
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Multiple points with rotated axes

All the points can be represented in the 3 axes pairs
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Multiple points with rotated axes
• If (𝐱𝟏

′′, 𝐱𝟐
′′) is the choice of axes, then 

the data is essentially one 
dimensional

• The data here is one dimensional

• For any given set of points, if we can 
find a axes pair such that few 
coordinates are needed, then we 
have achieved dimensionality 
reduction
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What is the dimensionality of the data here?

The data shown here is one dimensional
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What is the dimensionality of the data here?

The data shown here is two dimensional
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What is the dimensionality of the data here?

The data shown here is three dimensional
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Criteria for selecting axes
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Consider the case that after transformation (projection), the first axis is kept. 
Which of the following is the best axes?
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Criteria for selecting axes
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• The second scenario is the best because the entire “spread” of the data is 
conserved; spread is the variance

• Variance can also be thought of as the information in the data
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Data may not be collinear

• Goal is to rotate the axes and 
then keep data of only one 
axis

• Which orientation of axes 
pairs to choose and which of 
the two axis to keep?

• Criteria of maximizing 
variance can be applied here 
too
• We want to minimize the 

information loss
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Optimization formulation

• Let the data be 𝑥1, 𝑥2, … , 𝑥𝑁 where 
𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2

𝑇

• Let 𝐮𝟏 be the unit vector 
corresponding to the axis that is 
retained after dimensionality 
reduction

• 𝑥𝑖
′ is the projection of 𝑥𝑖 on 𝐮𝟏
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𝑥𝑖

𝐮𝟏
𝑥𝑖
′

𝑥𝑖
′ = 𝐮𝟏

𝑇𝑥𝑖

• Variance: 
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖

′ − ഥ𝑥′ 2

Mean of all projections



Optimization formulation
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𝑥𝑖
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• Substituting:
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Covariance matrix



Optimization problem
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𝑥𝑖

𝐮𝟏
𝑥𝑖
′

• Variance: 𝐮𝟏
𝑇S𝐮𝟏

• To find best 𝐮𝟏, maximize the 
variance

max
𝐮𝟏

𝐮𝟏
𝑇S𝐮𝟏

𝑠. 𝑡. 𝐮𝟏
𝑇𝐮𝟏 = 1



Solution to the optimization problem
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𝑥𝑖

𝐮𝟏
𝑥𝑖
′

• To find best 𝐮𝟏, maximize the 
variance

max
𝐮𝟏

𝐮𝟏
𝑇S𝐮𝟏

𝑠. 𝑡. 𝐮𝟏
𝑇𝐮𝟏 = 1

• Solution: 𝐮𝟏 is the first eigenvector 
of covariance matrix S, i.e.,

S𝐮𝟏 = 𝜆1𝐮𝟏

where 𝜆1 is the largest eigenvalue of S.

• Variance explained by 𝐮𝟏 is 𝜆1



To retain more than one dimension…
• For data with 𝑑 dimensions, we might be interested in the 𝑘 < 𝑑 axes 
𝐮𝟏, 𝐮𝟐, … , 𝐮𝐤, such that the variance of the projected data is maximized

• A similar optimization problem as above can be setup

• Solution is to choose the axes as the first 𝑘 eigenvectors of S, i.e.,
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S𝐮𝐣 = 𝜆𝑗𝐮𝐣 for 𝑗 = 1,… , 𝑘

• Variance explained by 𝐮𝐣 is 𝜆𝑗; 𝐮𝐣 is the j𝑡ℎ principal component

• Variance explained by 𝐮𝟏, … , 𝐮𝐤 is 𝜆1 + 𝜆2 +⋯+ 𝜆𝑘

• Total variance is the original data is sum of all eigenvalues 𝜆1 + 𝜆2 +⋯+ 𝜆𝑑

• In practice, 𝑘 might not be known to begin with, so all eigenvectors and 
eigenvalues are computed and then then 𝑘 is decided



PCA applied to Iris data
• 150 samples with 3 classes of 

flowers

• 4 dimensions: petal width, petal 
length, sepal width, sepal length

• % variance explained by 𝑗𝑡ℎ

component = 
𝜆𝑗

𝜆1+⋯+𝜆𝑑

• 92% of the variance is explained 
by first principal component (PC)
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Image source: http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html

http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html


Visualization of data in PC space

𝑘 = 1; projection on only the first 
PC (92% variance)
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𝑘 = 2; projection on the first two 
PCs (98% variance)



PCA applied to Diabetes data

• 442 diabetic individuals with 
information on one-year 
progression of disease

• 8 dimensions: age, body mass 
index, average blood pressure, 
and five blood serum 
measurements

• 41% of the variance is explained 
by first principal component (PC)

• Number of components to retain
• Rule of thumb: 80%
• Elbow
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Visualization of data in PC space
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𝑘 = 2; projection on the first two 
PCs (58% variance)



Interpreting the PCs

• PC1 is mainly driven by petal length 
• High value of PC1 suggests flower has long petal
• Note that the projected data has a zero mean

• PC2 is mainly driven by septal width and length
• High value of PC2 suggests that a flower has large sepals
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PC 1 PC 2

Sepal length 0.36 0.65

Sepal width -0.08 0.71

Petal length 0.86 -0.17

Petal width 0.36 -0.07



Relation of eigenvalues to covariance matrix
• Why was the % variance explained by first component so different in the two 

datasets?
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• Correlation matrix (related to covariance 
matrix) for the two datasets

• More high correlation between variables in Iris dataset



Relation between covariance matrix and eigenvalues

• As the covariance increases, first eigenvalues increases

• Consequently, % variance explained by first PC will also increase
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Cov. mat:
1 0
0 1

Tot. var. = 2
𝜆1 = 1

Cov. mat:
1 0.8
0.8 1

Tot. var. = 2
𝜆1 = 1.8

Cov. mat:
1 0.95

0.95 1

Tot. var. = 2
𝜆1 = 1.95



Scale of the features affects PCA

• In the first case, >90% of the variance is explained by PC1 but PC1 is mainly driven by the first 
feature (since it has a relatively larger variance)

• In the second case, 75% of the variance is explained by PC1 and it has similar contribution of 
both the features

• The correlation between the two features is the same in both cases
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Cov. mat:
10 0.5
0.5 0.1

Tot. var. = 10.1
𝜆1 = 10.02 0.99

0.06
−0.06
0.99

PC1 PC2 Cov. mat:
1 0.5
0.5 1

Tot. var. = 2
𝜆1 = 1.5 0.66

0.75
−0.75
0.66

PC1 PC2



Scale of features affects PCA
• Features with larger variance dominate PCs and may result in loss of useful 

information
• Example: Analysing COVID-19 data with features of age (range 20-80), blood oxygen 

level (range 90-98), body temperature (range 97-104)
• Most important features relation to severity might be oxygen level but it has a 

smaller variance compared to others

• Solution: Standardizing features (making them zero mean and unit 
variance) before PCA computations 
• Equivalent to using correlation matrix for analysis
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Covariance matrix = 
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 Correlation matrix= 

1 𝜌
𝜌 1

• For a given application of PCA, should correlation matrix be used, or covariance 
matrix be used?

• Depends on the application



Loss of information relevant for classification

• Inherent assumption is that variance between clusters/classes would be more than 
variance within clusters/classes

• Removing low variance PC might result in loss of information relevant to classification 
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% var = 97.5 % var = 2.5 % var = 97.5 % var = 2.5

Image source: https://www.robertoreif.com/blog/2018/1/9/pca

https://www.robertoreif.com/blog/2018/1/9/pca


Good references for PCA

• Bishop book on pattern recognition

• http://www.cse.psu.edu/~rtc12/CSE586Spring2010/lectures/pcaLect
ureShort.pdf

• https://www.cs.cmu.edu/~mgormley/courses/10701-
f16/slides/lecture14-pca.pdf
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http://www.cse.psu.edu/~rtc12/CSE586Spring2010/lectures/pcaLectureShort.pdf
https://www.cs.cmu.edu/~mgormley/courses/10701-f16/slides/lecture14-pca.pdf


Miscellaneous
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Which method to use?
Depends on the dataset!
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Logistic Regression SVM Random Forest

Decision Boundary Linear Non-linear (w/ kernel) Non-linear

Provides probability of class Yes No; but there are ways 
of estimating

No; but there are ways 
of estimating

Interpretability Yes Yes Lesser than decision 
trees and other methods

Handles large dimensionality No Yes Yes

Handles large number of samples Yes Slow for >10k samples Yes

Handles categorical features Yes if few No Yes

Features with different scales Yes No (“distance” may not 
be meaningful)

Yes

Handles missing data No No Yes

Visual resource: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Neural Networks
Learns non-linear decision boundary by combining input data non-linearly

MLSC20 KVS 33Image source: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy

Input
Hidden layers

Output

Challenges

• Large amounts of training data

• Training is computationally heavy

• Low interpretability 

Advantages

• Non-linear decision boundary

• Learns features from the data

https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy


Questions?
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