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Sky full of stars
There are so many stars in 
the sky. 

• Are all of them of the 
same type or are there 
different categories? 

• How to find those 
categories?

• What are the properties 
of those categories?

Data from 74 stars.

• Temperature at the 
surface of the star

• Luminosity: Brightness of 
the star relative to the 
sun
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Unsupervised learning

• Label (Y) is unavailable in training data

• Can happen due to several practical 
reasons

• Unsupervised learning looks for 
previously undetected patterns in the 
data with no pre-existing labels and 
with minimum human supervision 
[Wikipedia]

• Goal of unsupervised learning may be 
to discover groups of similar examples 
within the data [Bishop 2006]

• Want to find clusters in the data
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Clusters



Common framework so far…
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Define problem 
statement

Identify criteria
Obtain 

optimization 
problem

Solve 
optimization 

problem



Criteria for clustering

• Distance between points is one characteristic we can use

• Criterion: Samples within the same cluster are closer to each other compared 
to samples outside the clusterMLSC20 KVS 5



Formulating the optimization problem

• Samples 𝑥1, 𝑥2, … , 𝑥𝑁
• Two clusters (assumption)

• 𝑟𝑖 = [𝑟𝑖1, 𝑟𝑖2] where 
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𝑟𝑖𝑘 = ቊ
1, 𝑥𝑖 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝜇𝑘 represents a typical point in 
cluster 𝑘

• Distance of 𝑥𝑖 from 𝜇𝑘: 𝑥𝑖 − 𝜇𝑘

𝜇1

𝜇2

Example typical points for clusters

𝑥𝑖 − 𝜇1

𝑥𝑖 − 𝜇2



Formulating the optimization problem
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• If 𝜇𝑘 are known, then which cluster 
should point 𝑥𝑖 belong to i.e., what 
should be 𝑟𝑖?

• Solution: 𝑥𝑖 − 𝜇2 < 𝑥𝑖 − 𝜇1
• So 𝑟𝑖2 = 1, 𝑟𝑖1 = 0

• Consider the optimization for 𝑥𝑖

• Claim: Solving the above optimization 
will give the cluster for 𝑥𝑖

𝜇1

𝜇2

Example typical points for clusters

𝑥𝑖 − 𝜇1

𝑥𝑖 − 𝜇2

min
𝑟𝑖

෍

𝑘=1

2

𝑟𝑖𝑘 𝑥𝑖 − 𝜇𝑘
2



Formulating the optimization problem
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• We want to solve it together for all 
points 𝑥1, … , 𝑥𝑁

𝜇1

𝜇2

Example typical points for clusters

𝑥𝑖 − 𝜇1

𝑥𝑖 − 𝜇2

min
𝑟1,…,𝑟𝑁

𝐽

𝐽 = ෍

𝑖=1

𝑁

෍

𝑘=1

2

𝑟𝑖𝑘 𝑥𝑖 − 𝜇𝑘
2

• But 𝜇𝑘’s are unknown, so we also 
want to find them

min
𝑟1,…,𝑟𝑁,𝜇1,𝜇2

𝐽

Distortion measure



Solving the optimization problem
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Solve for 𝑟𝑖’s and 𝜇𝑘’s that jointly satisfy

min
𝑟1,…,𝑟𝑁, 𝜇1,𝜇2

෍

𝑖=1

𝑁

෍

𝑘=1

2

𝑟𝑖𝑘 𝑥𝑖 − 𝜇𝑘
2

No easy way to solve this directly! However, we can break the problem 
up into smaller problems and tackle them



If we knew 𝜇𝑘’s ….
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Then 𝑟𝑖’s can be easily found

min
𝑟1,…, 𝑟𝑁

෍

𝑖=1

𝑁

෍

𝑘=1

2

𝑟𝑖𝑘 𝑥𝑖 − 𝜇𝑘
2

• Observation 1: Cluster for sample 𝑥𝑖 is not affected by cluster of 
sample 𝑥𝑗
• So overall minimum is the same as minimizing for each 𝑥𝑖 separately

• Observation 2: For point 𝑥𝑖, minimum is achieved when 𝑟𝑖𝑘 = 1 for 𝑘
such that 𝑥𝑖 − 𝜇𝑘 is the smallest

𝜇𝑘 is gone from the 
arguments



If we knew 𝑟𝑖’s ….
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Then 𝜇𝑘’s can be easily found

min
𝜇1,𝜇2

෍

𝑖=1

𝑁

෍

𝑘=1

2

𝑟𝑖𝑘 𝑥𝑖 − 𝜇𝑘
2𝑟𝑖 is gone from the 

arguments

Standard calculus gives

𝜇𝑘 =
σ𝑖=1
𝑁 𝑟𝑖𝑘𝑥𝑖
σ𝑖=1
𝑁 𝑟𝑖𝑘

𝜇𝑘 is the average of all the points that belong to cluster 𝑘



We are not done yet…

• If 𝜇𝑘 are known, then 𝑟𝑖 can be found (re-
assigning data)

• If 𝑟𝑖 are known, then 𝜇𝑘 can be found (re-
computing cluster means)

• But we don’t know either to begin with…

• Solution: Perform them alternatively till 
convergence

MLSC20 KVS 12Image source: https://www.applicoinc.com/blog/7-strategies-solving-chicken-egg-problem-startup/

https://www.applicoinc.com/blog/7-strategies-solving-chicken-egg-problem-startup/


K-means in action
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K-means in action
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K-means algorithm

• Data: 𝑥1, … , 𝑥𝑁 (no labels required)

• Choose number of clusters 𝐾

• Randomly select 𝐾 data points as initial cluster centers (seeds)

• Step 1: Re-assign data to clusters based on new centers

• Step 2: Re-compute cluster means based on data assignment

• Repeat Step 1 and Step 2 alternatively until convergence
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The above algorithm works for any number of clusters 𝐾 and for 
multidimensional features 



How to choose K?
• Prior knowledge/domain knowledge

• Elbow method
• Intuition: If K is the number of natural clusters, adding more clusters won’t reduce J 

much
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Another example for choosing K
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What happens when K is not correct?

• Can get non-sensical clusters if 
K is not chosen appropriately

MLSC20 KVS 18Image source: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html


Data should be (roughly) spherical 

• Data is expected to be roughly spherical or ellipsoid in shape

MLSC20 KVS 19Image source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Variance

• Expected clusters have different 
variances

• K-means ends up creating 
clusters with roughly the same 
variance

MLSC20 KVS 20Image source: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html


Gaussian Mixture Model
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Gaussian distribution

Multivariate Gaussian distribution has two 
parameters
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𝑓 𝑋; 𝜇, Σ =
1

2𝜋 𝑑/2 Σ 1/2
exp −

1

2
𝑋 − 𝜇 𝑇Σ−1 𝑋 − 𝜇

Mean: 𝜇 ∈ 𝑅𝑑

Covariance matrix: Σ ∈ 𝑅𝑑×𝑑

𝜇 =
0
0

Σ =
1 0
0 1

=
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

Example with d=2

Image source: https://fabiandablander.com/statistics/Two-Properties.html

Image source: https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/

https://fabiandablander.com/statistics/Two-Properties.html
https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/


Effect of varying the covariance matrix

MLSC20 KVS 23Image source: https://fabiandablander.com/statistics/Two-Properties.html

https://fabiandablander.com/statistics/Two-Properties.html


Estimating mean and covariance matrix of a 
Gaussian distribution

• If 𝑋1, 𝑋2, … are 𝑁 samples from a 𝑑
dimensional Gaussian distribution with mean 
𝜇 and covariance matrix Σ, then the 
parameters can be estimated from the data as 
follows: 
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ҧ𝜇 =
1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖

തΣ =
1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖 − ҧ𝜇 𝑋𝑖 − ҧ𝜇 𝑇



Hard clustering vs soft clustering

• Hard clustering: Sample belongs to only 
one cluster
• For example, cluster belonging in K-Means

• Soft clustering: Sample belongs to 
multiple clusters with varying degree

• Gives a measure of confidence about 
clustering

• Can achieve soft clustering using 
concepts from probability
• For example, if there are 3 clusters, a sample 

belongs to Cluster 1 wp 0.5, Cluster 2 wp 0.3, 
and Cluster 3 wp 0.2
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Gaussian Mixture model (GMM)
• Goal: (Soft) Cluster the data

• Assumption:
• Data consists of multiple Gaussian 

distributions
• Each sample comes from one 

Gaussian distribution (unknown to 
us)

• Want to find the parameters of the 
Gaussian distributions and 
probability of choosing a given 
Gaussian distribution 

• Number of Gaussians must be 
specified (like in K-means)
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Formulation of optimization problem
• Samples 𝑥1, 𝑥2, … , 𝑥𝑁

• For each 𝑥𝑖, define 𝑧𝑖 which 
represents the true (unknown) 
cluster (like 𝑟𝑖 in k-means)
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𝑧𝑖 = [𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3]

• Parameters of Gaussian 
distribution: 𝜋𝑘 , 𝜇𝑘 , Σ𝑘 for 𝑘 =
1, 2, 3



Formulation of optimization problem
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• If parameters of Gaussian 
distribution: 𝜋𝑘 , 𝜇𝑘 , Σ𝑘 for 𝑘 =
1, 2, 3 are known

𝑃 𝑧𝑖1 = 1 𝑥𝑖 =?

=
𝑝 𝑥𝑖 𝑧𝑖1 = 1 𝑃 𝑧𝑖1 = 1

𝑝(𝑥𝑖)

=
𝑝 𝑥𝑖 𝑧𝑖1 = 1 𝜋1

σ𝑘=1
3 𝑝 𝑥𝑖 𝑧𝑖𝑘 = 1 𝜋𝑘

𝑝 𝑥𝑖 𝑧𝑖𝑘 = 1 = 𝑓(𝑥𝑖; 𝜇𝑘 , Σ𝑘)

For comparison with K-means, can think of 𝑃(𝑧𝑖1 = 1|𝑥𝑖) as the “distance” of 𝑥𝑖 from Cluster 1



Optimization problem

• Want to maximize the probability of observing the given data by 
appropriately choosing 𝑧𝑖’s and 𝜋𝑘 , 𝜇𝑘 , Σ𝑘’s

• Optimization problem has a similar issue like in K-means
• All terms cannot be optimized together

• Can we break up the problem into smaller problems in this case too?
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If we knew the parameters 𝜋𝑘 , 𝜇𝑘 , Σ𝑘 …

• What is the best choice of 𝑧1, 𝑧2, … , 𝑧𝑁?

• Observation 1: Samples are independent, so solving maximization for 
each one separately and combining them gives the correct answer

• Observation 2: For sample 𝑥𝑖, the correct cluster would be the one 
that has the maximum probability 𝑃(𝑧𝑖𝑘 = 1|𝑥𝑖)
• Compute 𝑃 𝑧𝑖1 = 1 𝑥𝑖 , 𝑃 𝑧𝑖2 = 1 𝑥𝑖 , 𝑃(𝑧𝑖3 = 1|𝑥𝑖)

• Hard assignment: Choose the maximum out of them

• Soft assignment: These probability values itself are the soft assignment 
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If we knew the soft assignments ….
• Then can the parameters be computed?

Let us look at Cluster 1 (𝑧𝑖1’s)

• Belongingness of 𝑥𝑖 to Cluster 1 is 
𝑃 𝑧𝑖1 = 1 𝑥𝑖
• Example, 𝑃 𝑧𝑖1 = 1 𝑥1 =
0.70, 𝑃 𝑧𝑖1 = 1 𝑥2 = 0.18

• Which on the above should contribute more 
to the parameters of Cluster 1?

• Intuition: Sample will contribute to 
parameter based on their belongingness
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𝜇1 =
σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)𝑥𝑖
σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)

𝜇1 =
σ𝑖=1
𝑁 1 ×𝑥𝑖
σ𝑖=1
𝑁 1

Like 𝑟𝑖1 in K-means but 
allowed to be in [0,1]

Color and size represents the 
belongingness (larger and darker is higher)



If we knew the soft assignments ….

• Intuition: Sample will contribute to parameter based on their belongingness

Let us look the Cluster 1 (𝑧𝑖1’s)

• Belongingness of for 𝑥𝑖 to Cluster 1 is 𝑃 𝑧𝑖1 = 1 𝑥𝑖
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𝜇1 =
σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)𝑥𝑖
σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)

Σ1 =
σ𝑖=1
𝑁 𝑃 𝑧𝑖1 = 1 𝑥𝑖 𝑥𝑖 − 𝜇1 𝑥𝑖 − 𝜇1

𝑇

σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)

𝜋1 =
σ𝑖=1
𝑁 𝑃(𝑧𝑖1 = 1|𝑥𝑖)

𝑁

• Same formulae hold for the parameters of the other clusters also with the 
probability terms 𝑃(𝑧𝑖𝑘 = 1|𝑥𝑖) being used for Cluster k



We are not done yet…

• If parameters are known, then probabilities can 
be found (soft clustering of data)

• If probabilities are known, then parameters can 
be found (re-computing Gaussian parameters)

• But we don’t know either to begin with…

• Solution: Perform them alternatively till 
convergence

MLSC20 KVS 33Image source: https://www.applicoinc.com/blog/7-strategies-solving-chicken-egg-problem-startup/

https://www.applicoinc.com/blog/7-strategies-solving-chicken-egg-problem-startup/


GMM in 
action
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GMM in 
action
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GMM in 
action
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GMM in action
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GMM algorithm
• Data: 𝑥1, … , 𝑥𝑁 (no labels required)

• Choose number of components in the mixture 𝐾

• Randomly select 𝐾 data points as initial cluster centers (𝜇𝑘). Also pick 
(randomly) Σ𝑘 and non-zero 𝜋𝑘

• Step 1: Re-assign data to mixture softly based on new parameters

• Step 2: Re-compute parameters means based on data assignment

• Repeat Step 1 and Step 2 alternatively until convergence
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The above algorithm works for any number of clusters 𝐾 and for 
multidimensional features 



Works better than K-Means in some cases

MLSC20 KVS 39Image source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

K-Means

GMM

GMM can handle clusters of 
different variances, shapes 
(ellipsoids), and sample sizes

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Though it requires data from a cluster to be 
ellipsoid

MLSC20 KVS 40Image source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Questions?
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