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Decision boundary

• kNN is computationally expensive 
because distance from N points 
needs to be computed for every new 
sample

• Threshold rule is computationally 
inexpensive
• The example was for a single dimension 

and the distribution was known

• Need a “threshold” for multi-
dimensional data: decision boundary
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Threshold

Example (Lec 2). Type of new orange is predicted 
by comparing its size with the threshold.

Size
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Navel oranges

Clementine oranges

Decision boundary



Classification using a decision boundary

• New sample: (𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤) and decision boundary 𝑓 𝑥, 𝑦 = 0

• If 𝑓 𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 < 0 then class 0 (blue)

• If 𝑓 𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 > 0 then class 1 (red)
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𝑓 𝑥, 𝑦 = 0

X

Y
3𝑥 + 2𝑦 − 15 = 0

X

Y

𝑓 𝑥, 𝑦 > 0

𝑓 𝑥, 𝑦 < 0



Which boundary to use?

• Criterion 1: Should classify all the samples correctly

• Criterion 2: Margin should be large to reduce 
generalization error
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margin

Large 
margins

Small 
margins



Preliminaries
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𝑋2

𝑋1

• Norm of vector 𝑤: 𝑤 = 𝑤1
2 +𝑤2

2

• Vectors 𝑤 = [𝑤1, 𝑤2], 𝑥 = [𝑥1, 𝑥2]

• 𝑓 𝑥 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 𝑤𝑇𝑥 + 𝑏

• Equation of line: 𝑓 𝑥 = 0

• Distance of point 𝑎 = [𝑎1, 𝑎2] from 
the line: |𝑓 𝑎 |

𝑤

𝑤𝑇𝑥 + 𝑏 = 0

𝑎

|𝑓 𝑎 |

𝑤

|𝑓 𝑧 |

𝑤

𝑧

• Equations hold for hyperplanes (dimensions 𝑑 ≥ 3)



Support Vector Machine

• Training data 
𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁 , 𝑦𝑁)
• 𝑦𝑖 ∈ −1,1

• 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]

• Decision boundary: 
𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏 = 0

• Optimization problem:
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𝑓 𝑥 = 0𝑓 𝑥 = 1

𝑓 𝑥 = −1

2

𝑤max
𝑤,𝑏

2

𝑤

𝑠. 𝑡. 𝑦𝑖𝑓 𝑥𝑖 ≥ 1 ∀𝑖

Criterion 2

Criterion 1



SVM optimization problem

MLSC20 KVS 7

max
𝑤,𝑏

2

𝑤

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

min
𝑤,𝑏

𝑤 2

2

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

max
𝜆1,…,𝜆𝑁

min
𝑤,𝑏

ℒ(𝑤, 𝑏, 𝜆1, … , 𝜆𝑁)

ℒ 𝑤, 𝑏, 𝜆1, … , 𝜆𝑁 =
1

2
𝑤 2 −σ𝑖=1

𝑁 𝜆𝑖{𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1}

Note the square

where

and 𝜆𝑖 ≥ 0 ∀𝑖



SVM solution

• Use standard tools to optimize

• Solution: 
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𝑤 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖

• 𝜆𝑖 = 0 for all points except the ones 
on the margins

𝑓 𝑥 = 0𝑓 𝑥 = 1

𝑓 𝑥 = −1

𝜆𝑖 = 0 for all these points 

𝜆𝑖 > 0 for all these points 

Support vectors



Allowing some misclassifications

• Real-world data is not always completely 
separable

• Modify SVM to allow for
• Some misclassifications

• Some points to be correctly classified but 
lie within the margin

• Optimization problem with almost the 
same with an extra parameter 𝐶 > 0
• Controls how many points are within the 

margin or misclassified

• 𝐶 → 0 allows more misclassifications 
during training

• 𝐶 → ∞ makes the model more complex 
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𝑋2

𝑋1

misclassification

Classified correctly 
but within the margin



SVM algorithm

• Training data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁, 𝑦𝑁)

• Set parameter 𝐶 > 0

• Training: Solution (best 𝑤, 𝑏) depends only on the support vectors

• For a new sample 𝑥𝑛𝑒𝑤, decision is made as follows
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𝑤 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖

𝑓 𝑥𝑛𝑒𝑤 = 𝑤𝑇𝑥𝑛𝑒𝑤 + 𝑏 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖
𝑇𝑥𝑛𝑒𝑤 + 𝑏 ො𝑦𝑛𝑒𝑤 = ቊ

−1, 𝑓(𝑥𝑛𝑒𝑤) < 0

1, 𝑓 𝑥𝑛𝑒𝑤 > 0



Non-linear decision boundary
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Will linear SVM be able to differentiate between the two classes?

𝑋1

𝑋2



Transformation
• Points 𝑥 = [𝑥1, 𝑥2]

• Transform the point 𝑥 → 𝜙(𝑥) where 𝜙 𝑥 = [𝑥1
2, 𝑥2

2]
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𝑋1

𝑋2

𝑋1
2

𝑋2
2

𝜙(𝑥)

• SVM can classify the transformed data



Kernel SVM
When transformation 𝜙 𝑥 is applied to the 
data, SVM parameters 𝑤 becomes
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𝑤 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝜙(𝑥𝑖)

𝑓 𝑥𝑛𝑒𝑤 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑛𝑒𝑤) + 𝑏

= 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏

𝜙(𝑥)

kernel



Kernel SVM

• Non-linear decision boundaries

• Decision depends only on the

• Support vectors

• Kernel 𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤)

• Commonly used kernels 𝒌(𝑥𝑖 , 𝑥𝑗)

• Polynomial: 1 + 𝑥𝑖
𝑇𝑥𝑗

𝑚

• Radial basis function: exp(−𝛾 𝑥𝑖 − 𝑥𝑗
2
)
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𝑓(𝑥𝑛𝑒𝑤) = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏

Image source: Bishop, (2006) “Pattern Recognition and Machine Learning”. 



Kernel SVM algorithm

• Training data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁 , 𝑦𝑁)

• Set regularization parameter 𝐶 > 0

• Choose kernel and its parameter (for e.g., 𝑚 for polynomial)

• Train the model

• For a new sample 𝑥𝑛𝑒𝑤, decision is made as follows

• Decision only depends on the support vectors and the kernel
• Even 𝜙 is not required
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𝑓 𝑥𝑛𝑒𝑤 = 

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏 ො𝑦𝑛𝑒𝑤 = ቊ
−1, 𝑓(𝑥𝑛𝑒𝑤) < 0

1, 𝑓 𝑥𝑛𝑒𝑤 > 0



Effect of hyperparameters 𝛾 on RBF kernel and C
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exp(−𝛾 𝑥𝑖 − 𝑥𝑗
2
)

• RBF kernel:

• As 𝛾 increases, curvature 
increases
• For very large 𝛾, radius of 

influence of SV only 
includes SV

• Small 𝐶 allows more 
misclassifications
• As C increases, more and

more misclassified points
lie more in the margins

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


Decision trees and Random forests
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Decision tree examples

Make decision based on sequential questions that consider one feature at 
a time
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Age < 30?

Is a person fit? 
Data: age, pizza, exercise

Eats a lot 
of pizza Exercises?

Yes No

NoNoYes Yes

UnfitFit FitUnfit

Does a car have a high mileage? 
Data: weight, horsepower

Weight = 
heavy?

horsepower 
< 86?

No Yes

No
Yes

High 
mileage

High mileageLow mileage

Example source: https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb

https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb


Decision tree
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• A decision tree maps input 𝑥 ∈ 𝑅𝑑 to 
output 𝑦 using binary decision rules:

• Each node is the tree has a 
splitting rule

• Each leaf node is associated with 
an output value (outputs can 
repeat)

• Each splitting rule compare a feature 
to a threshold

• Using these splitting rules a path to a 
leaf node gives the prediction

𝑥2 < 5

𝑥1 > 1.9 𝑥3 ≤ 2

Yes No

NoNoYes Yes

ො𝑦 = 0 ො𝑦 = 1

ො𝑦 = 1 ො𝑦 = 0

Example decision tree for binary class 
classification with 3 dimensional features

Depth=2



Decision tree construction algorithm
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1. Start with a single leaf node containing all data

2. Loop through the following steps:
• Pick the leaf to split that reduces uncertainty the most

• Pick the splitting rule for the chosen leaf node using the following
i. For each feature, check all possible splits and find the best split

ii. With the best split of each feature determined, pick the best feature

3. Continue splitting nodes (increasing depth of tree) until stopping 
criteria is reached

Label/response of the leaf is majority of the data assigned to it



Decision tree: Solved example
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𝑋1

𝑋2

Loop through the following:

• Pick the leaf to split that reduces 
uncertainty the most

• Only one option to begin with

• Pick the best splitting rule for the 
best feature for the chosen leaf 
node

• Two options for features: 𝑥1
and 𝑥2

• Best for 𝑥1: 𝑥1 < 1.7

• Best for 𝑥2: 𝑥2 > 1.3

𝑥1 < 1.7

𝑥2 > 1.3



Decision tree: Solved example
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𝑋1

𝑋2

• Pick the leaf to split

• Pick the best splitting rule for the best 
feature
• Best for 𝑥1: 𝑥1 < 2.7
• Best for 𝑥2: 𝑥2 > 1.3

𝑥2 > 1.3

𝑥1 < 1.7

ො𝑦 = 0 ො𝑦 = 1

All points are 
correctly classified

𝑥1 < 2.7



Decision tree: Solved example
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𝑋1

𝑋2

𝑥1 < 1.7

ො𝑦 = 0

ො𝑦 = 1

All points are 
correctly classified

𝑥1 < 2.7

𝑥2 > 1.3

ො𝑦 = 0

All points are 
correctly classified• Best for 𝑥1: 𝑥1 < 2.7

• Best for 𝑥2: 𝑥2 > 1.8

𝑥2 > 1.8



Decision tree: Solved example
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𝑋1

𝑋2

𝑥1 < 1.7

ො𝑦 = 0

ො𝑦 = 1

𝑥2 > 1.3

ො𝑦 = 0

𝑥1 < 2.7

ො𝑦 = 1

Depth=3



Decision tree: Advantages and limitations
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Advantages:

• Non-linear decision boundaries

• Intuitive and easy to interpret

Limitations: 

• Decision trees are prone to 
overfitting

• Training error decreases as nodes 
increase

• Testing error decreases and then 
increases due to overfitting



Random forest – Bagging 
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• Use multiple decision trees, each trained with a subset of the training data

• Let training data have 𝑁 samples

• For each tree, randomly select 𝑁 samples (with replacement) from the 
training data

• Repeat this for each tree

• Aggregate the decision from multiple trees for the final decision

Training data Bootstrap 
sample 1

Bootstrap 
sample 2

Bootstrap 
sample 3



Random forest – random feature set
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• At each split, only consider a random subset of 𝑚 features to choose the splitting rule

• 𝑚 should be specified; typically 𝑚 ≈ 𝑑 where 𝑑 is the dimensionality of the data

𝑥2 < 4 𝑥3 > 2

𝑥4 < 7

𝑥1 < 3

𝑥4 < 6 𝑥3 > 2

𝑥2 < 3

𝑥1 < 3

Decision tree Tree in Random Forest

Set of features



Random forest algorithm
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Algorithm:

1. Draw a bootstrap sample (sample data with replacement) ℬ𝑏 of the same size 
𝑁 from the training data

2. Train a tree 𝑓𝑏 on ℬ𝑏, where each split is computed as follows:

i. Randomly select 𝑚 dimensions of 𝑥 ∈ 𝑅𝑑, newly chosen for each splitting 
rule

ii. Make the best split restricted to the subset of dimensions



Advantages

• Applicable to both regression and classification problems

• Handle categorial predictors naturally

• Computationally simple and quick to fit, even for large problems

• Can handle highly non-linear interactions and classification 
boundaries

• Offers some interpretability; though not as interpretable as Decision 
Trees

• Provides variable/feature importance
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Questions?
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