Support Vector Machine and Random Forest

Machine Learning Summer Course 2020

Krishnakant Saboo

11th July 2020

Decision boundary

- kNN is computationally expensive because distance from N points needs to be computed for every new sample
- Threshold rule is computationally inexpensive
 - The example was for a single dimension and the distribution was known
- Need a "threshold" for multidimensional data: *decision boundary*

Example (Lec 2). Type of new orange is predicted by comparing its size with the threshold.

Classification using a decision boundary

- New sample: (x_{new}, y_{new}) and decision boundary f(x, y) = 0
- If $f(x_{new}, y_{new}) < 0$ then class 0 (blue)
- If $f(x_{new}, y_{new}) > 0$ then class 1 (red)

• Criterion 2: Margin should be large to reduce generalization error

- Criterion 1: Should classify all the samples correctly
-]4 X_1

Preliminaries

• Vectors $w = [w_1, w_2], x = [x_1, x_2]$

•
$$f(x) = w_1 x_1 + w_2 x_2 + b = w^T x + b$$

- Equation of line: f(x) = 0
- Norm of vector $w: ||w|| = \sqrt{w_1^2 + w_2^2}$
- Distance of point $a = [a_1, a_2]$ from the line: $\frac{|f(a)|}{||w||}$

• Equations hold for hyperplanes (dimensions $d \ge 3$)

Support Vector Machine

- Training data
 - $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$ • $y_i \in \{-1, 1\}$ • $x_i = [x_1, x_2, y_1]$
 - $x_i = [x_{i1}, x_{i2}, \dots, x_{id}]$
- Decision boundary: $f(x) = w^T x + b = 0$
- Optimization problem:

where

$$\mathcal{L}(w, b, \lambda_1, \dots, \lambda_N) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^N \lambda_i \{y_i(w^T x_i + b) - 1\}$$
$$\lambda_i \ge 0 \quad \forall i$$

and

SVM solution

- Use standard tools to optimize
- Solution:

$$w = \sum_{i=1}^{N} \lambda_i y_i x_i$$

• $\lambda_i = 0$ for all points except the ones on the margins

Allowing some misclassifications

- Real-world data is not always completely separable
- Modify SVM to allow for
 - Some misclassifications
 - Some points to be correctly classified but lie within the margin
- Optimization problem with almost the same with an extra parameter C > 0
 - Controls how many points are within the margin or misclassified
 - $C \rightarrow 0$ allows more misclassifications during training
 - $C \rightarrow \infty$ makes the model more complex

SVM algorithm

- Training data: $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
- Set parameter C > 0
- Training: Solution (best w, b) depends only on the support vectors

$$w = \sum_{i=1}^{N} \lambda_i y_i x_i$$

• For a new sample x_{new} , decision is made as follows

$$f(x_{new}) = w^T x_{new} + b = \sum_{i=1}^{N} \lambda_i y_i x_i^T x_{new} + b \qquad \hat{y}_{new} = \begin{cases} -1, & f(x_{new}) < 0\\ 1, & f(x_{new}) > 0 \end{cases}$$

Non-linear decision boundary

Will linear SVM be able to differentiate between the two classes?

Transformation

• Points $x = [x_1, x_2]$

• **Transform** the point $x \to \phi(x)$ where $\phi(x) = [x_1^2, x_2^2]$

• SVM can classify the transformed data

Kernel SVM

When transformation $\phi(x)$ is applied to the data, SVM parameters w becomes

$$w = \sum_{i=1}^{N} \lambda_i y_i \phi(x_i)$$
$$f(x_{new}) = \sum_{i=1}^{N} \lambda_i y_i \overline{\phi(x_i)^T \phi(x_{new})} + b$$
$$= \sum_{i=1}^{N} \lambda_i y_i \mathbf{k}(x_i, x_{new}) + b$$
kernel

Kernel SVM

$$f(x_{new}) = \sum_{i=1}^{N} \lambda_i y_i \mathbf{k}(x_i, x_{new}) + b$$

- Non-linear decision boundaries
- Decision depends only on the
 - Support vectors
 - Kernel $\boldsymbol{k}(x_i, x_{new})$
- Commonly used kernels $\boldsymbol{k}(x_i, x_j)$
 - Polynomial: $(1 + x_i^T x_j)^m$
 - Radial basis function: $\exp(-\gamma ||x_i x_j||^2)$

Figure 7.2 Example of synthetic data from two classes in two dimensions showing contours of constant $y(\mathbf{x})$ obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

Kernel SVM algorithm

- Training data: $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
- Set regularization parameter C > 0
- Choose kernel and its parameter (for e.g., *m* for polynomial)
- Train the model
- For a new sample x_{new} , decision is made as follows

$$f(x_{new}) = \sum_{i=1}^{N} \lambda_i y_i \mathbf{k}(x_i, x_{new}) + b \qquad \hat{y}_{new} = \begin{cases} -1, & f(x_{new}) < 0\\ 1, & f(x_{new}) > 0 \end{cases}$$

- Decision only depends on the support vectors and the kernel
 - Even ϕ is not required

Effect of hyperparameters γ on RBF kernel and C

- RBF kernel:
 - $\exp(-\gamma \|x_i x_j\|^2)$
- As γ increases, curvature increases
 - For very large γ, radius of influence of SV only includes SV
- Small *C* allows more misclassifications
 - As C increases, more and more misclassified points lie more in the margins

gamma=10^-1, C=10^-2

gamma=10^-1, C=10^0

gamma=10^-1, C=10^2

gamma=10^0, C=10^-2

gamma=10^0, C=10^0

gamma=10^0, C=10^2

gamma=10^1, C=10^-2

gamma=10^1, C=10^0

gamma=10^1, C=10^2

Decision trees and Random forests

MLSC20 KVS

Example source: https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb

Decision tree

- A decision tree maps input $x \in R^d$ to output y using binary decision rules:
 - Each node is the tree has a splitting rule
 - Each leaf node is associated with an output value (outputs can repeat)
- Each splitting rule compare a feature to a threshold
- Using these splitting rules a path to a leaf node gives the prediction

Example decision tree for binary class classification with 3 dimensional features

Decision tree construction algorithm

- 1. Start with a single leaf node containing all data
- 2. Loop through the following steps:
 - Pick the leaf to split that reduces uncertainty the most
 - Pick the splitting rule for the chosen leaf node using the following
 - i. For each feature, check all possible splits and find the best split
 - ii. With the best split of each feature determined, pick the best feature
- 3. Continue splitting nodes (increasing depth of tree) until stopping criteria is reached

Label/response of the leaf is majority of the data assigned to it

Loop through the following:

- Pick the leaf to split that reduces uncertainty the most
 - Only one option to begin with
- Pick the best splitting rule for the best feature for the chosen leaf node
 - Two options for features: x₁ and x₂
 - Best for $x_1: x_1 < 1.7$
 - Best for $x_2: x_2 > 1.3$

All points are correctly classified

- Pick the leaf to split
- Pick the best splitting rule for the best feature
 - Best for $x_1: x_1 < 2.7$
 - Best for $x_2: x_2 > 1.3$

Decision tree: Advantages and limitations

Advantages:

- Non-linear decision boundaries
- Intuitive and easy to interpret

Limitations:

- Decision trees are prone to overfitting
 - Training error decreases as nodes increase
 - Testing error decreases and then increases due to overfitting

Random forest – Bagging

- Use multiple decision trees, each trained with a subset of the training data
 - Let training data have N samples
 - For each tree, randomly select N samples (with replacement) from the training data
 - Repeat this for each tree
- Aggregate the decision from multiple trees for the final decision

Random forest – random feature set

- At each split, only consider a random subset of *m* features to choose the splitting rule
- *m* should be specified; typically $m \approx \sqrt{d}$ where *d* is the dimensionality of the data

Decision tree Tree in Random Forest Set of features *x*₁ < 3 $x_1 < 3$ $x_2 < 4$ *x*₃ > 2 *x*₄ < 6 *x*₃ > 2 $x_4 < 7$ *x*₂ < 3

Random forest algorithm

Algorithm:

- 1. Draw a bootstrap sample (sample data with replacement) \mathcal{B}_b of the same size N from the training data
- 2. Train a tree f_b on \mathcal{B}_b , where each split is computed as follows:
 - i. Randomly select m dimensions of $x \in \mathbb{R}^d$, newly chosen for each splitting rule
 - ii. Make the best split restricted to the subset of dimensions

Advantages

- Applicable to both regression and classification problems
- Handle categorial predictors naturally
- Computationally simple and quick to fit, even for large problems
- Can handle highly non-linear interactions and classification boundaries
- Offers some interpretability; though not as interpretable as Decision Trees
- Provides variable/feature importance

Questions?