
Support Vector Machine and
Random Forest

Machine Learning Summer Course 2020

Krishnakant Saboo

11th July 2020

MLSC20 KVS 1

Decision boundary

• kNN is computationally expensive
because distance from N points
needs to be computed for every new
sample

• Threshold rule is computationally
inexpensive
• The example was for a single dimension

and the distribution was known

• Need a “threshold” for multi-
dimensional data: decision boundary

MLSC20 KVS
2

Threshold

Example (Lec 2). Type of new orange is predicted
by comparing its size with the threshold.

Size

Weight

Si
ze

Navel oranges

Clementine oranges

Decision boundary

Classification using a decision boundary

• New sample: (𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤) and decision boundary 𝑓 𝑥, 𝑦 = 0

• If 𝑓 𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 < 0 then class 0 (blue)

• If 𝑓 𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 > 0 then class 1 (red)
MLSC20 KVS 3

Weight

Si
ze

Decision boundary

Weight

Si
ze

𝑓 𝑥, 𝑦 = 0

X

Y
3𝑥 + 2𝑦 − 15 = 0

X

Y

𝑓 𝑥, 𝑦 > 0

𝑓 𝑥, 𝑦 < 0

Which boundary to use?

• Criterion 1: Should classify all the samples correctly

• Criterion 2: Margin should be large to reduce
generalization error

MLSC20 KVS 4

𝑋2

𝑋1

𝑓1 𝑓2

𝑓3

𝑓4

margin

margin

Large
margins

Small
margins

Preliminaries

MLSC20 KVS 5

𝑋2

𝑋1

• Norm of vector 𝑤: 𝑤 = 𝑤1
2 +𝑤2

2

• Vectors 𝑤 = [𝑤1, 𝑤2], 𝑥 = [𝑥1, 𝑥2]

• 𝑓 𝑥 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 𝑤𝑇𝑥 + 𝑏

• Equation of line: 𝑓 𝑥 = 0

• Distance of point 𝑎 = [𝑎1, 𝑎2] from
the line: |𝑓 𝑎 |

𝑤

𝑤𝑇𝑥 + 𝑏 = 0

𝑎

|𝑓 𝑎 |

𝑤

|𝑓 𝑧 |

𝑤

𝑧

• Equations hold for hyperplanes (dimensions 𝑑 ≥ 3)

Support Vector Machine

• Training data
𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁 , 𝑦𝑁)
• 𝑦𝑖 ∈ −1,1

• 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]

• Decision boundary:
𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏 = 0

• Optimization problem:

MLSC20 KVS 6

𝑓 𝑥 = 0𝑓 𝑥 = 1

𝑓 𝑥 = −1

2

𝑤max
𝑤,𝑏

2

𝑤

𝑠. 𝑡. 𝑦𝑖𝑓 𝑥𝑖 ≥ 1 ∀𝑖

Criterion 2

Criterion 1

SVM optimization problem

MLSC20 KVS 7

max
𝑤,𝑏

2

𝑤

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

min
𝑤,𝑏

𝑤 2

2

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖

max
𝜆1,…,𝜆𝑁

min
𝑤,𝑏

ℒ(𝑤, 𝑏, 𝜆1, … , 𝜆𝑁)

ℒ 𝑤, 𝑏, 𝜆1, … , 𝜆𝑁 =
1

2
𝑤 2 −σ𝑖=1

𝑁 𝜆𝑖{𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1}

Note the square

where

and 𝜆𝑖 ≥ 0 ∀𝑖

SVM solution

• Use standard tools to optimize

• Solution:

MLSC20 KVS 8

𝑤 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖

• 𝜆𝑖 = 0 for all points except the ones
on the margins

𝑓 𝑥 = 0𝑓 𝑥 = 1

𝑓 𝑥 = −1

𝜆𝑖 = 0 for all these points

𝜆𝑖 > 0 for all these points

Support vectors

Allowing some misclassifications

• Real-world data is not always completely
separable

• Modify SVM to allow for
• Some misclassifications

• Some points to be correctly classified but
lie within the margin

• Optimization problem with almost the
same with an extra parameter 𝐶 > 0
• Controls how many points are within the

margin or misclassified

• 𝐶 → 0 allows more misclassifications
during training

• 𝐶 → ∞ makes the model more complex
MLSC20 KVS 9

𝑋2

𝑋1

misclassification

Classified correctly
but within the margin

SVM algorithm

• Training data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁, 𝑦𝑁)

• Set parameter 𝐶 > 0

• Training: Solution (best 𝑤, 𝑏) depends only on the support vectors

• For a new sample 𝑥𝑛𝑒𝑤, decision is made as follows

MLSC20 KVS 10

𝑤 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖

𝑓 𝑥𝑛𝑒𝑤 = 𝑤𝑇𝑥𝑛𝑒𝑤 + 𝑏 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝑥𝑖
𝑇𝑥𝑛𝑒𝑤 + 𝑏 ො𝑦𝑛𝑒𝑤 = ቊ

−1, 𝑓(𝑥𝑛𝑒𝑤) < 0

1, 𝑓 𝑥𝑛𝑒𝑤 > 0

Non-linear decision boundary

MLSC20 KVS 11

Will linear SVM be able to differentiate between the two classes?

𝑋1

𝑋2

Transformation
• Points 𝑥 = [𝑥1, 𝑥2]

• Transform the point 𝑥 → 𝜙(𝑥) where 𝜙 𝑥 = [𝑥1
2, 𝑥2

2]

MLSC20 KVS 12

𝑋1

𝑋2

𝑋1
2

𝑋2
2

𝜙(𝑥)

• SVM can classify the transformed data

Kernel SVM
When transformation 𝜙 𝑥 is applied to the
data, SVM parameters 𝑤 becomes

MLSC20 KVS 13

𝑤 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝜙(𝑥𝑖)

𝑓 𝑥𝑛𝑒𝑤 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑛𝑒𝑤) + 𝑏

= ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏

𝜙(𝑥)

kernel

Kernel SVM

• Non-linear decision boundaries

• Decision depends only on the

• Support vectors

• Kernel 𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤)

• Commonly used kernels 𝒌(𝑥𝑖 , 𝑥𝑗)

• Polynomial: 1 + 𝑥𝑖
𝑇𝑥𝑗

𝑚

• Radial basis function: exp(−𝛾 𝑥𝑖 − 𝑥𝑗
2
)

MLSC20 KVS 14

𝑓(𝑥𝑛𝑒𝑤) = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏

Image source: Bishop, (2006) “Pattern Recognition and Machine Learning”.

Kernel SVM algorithm

• Training data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑁 , 𝑦𝑁)

• Set regularization parameter 𝐶 > 0

• Choose kernel and its parameter (for e.g., 𝑚 for polynomial)

• Train the model

• For a new sample 𝑥𝑛𝑒𝑤, decision is made as follows

• Decision only depends on the support vectors and the kernel
• Even 𝜙 is not required

MLSC20 KVS 15

𝑓 𝑥𝑛𝑒𝑤 = ෍

𝑖=1

𝑁

𝜆𝑖𝑦𝑖𝒌(𝑥𝑖 , 𝑥𝑛𝑒𝑤) + 𝑏 ො𝑦𝑛𝑒𝑤 = ቊ
−1, 𝑓(𝑥𝑛𝑒𝑤) < 0

1, 𝑓 𝑥𝑛𝑒𝑤 > 0

Effect of hyperparameters 𝛾 on RBF kernel and C

MLSC20 KVS 16Image source: https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

exp(−𝛾 𝑥𝑖 − 𝑥𝑗
2
)

• RBF kernel:

• As 𝛾 increases, curvature
increases
• For very large 𝛾, radius of

influence of SV only
includes SV

• Small 𝐶 allows more
misclassifications
• As C increases, more and

more misclassified points
lie more in the margins

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Decision trees and Random forests

MLSC20 KVS 17

Decision tree examples

Make decision based on sequential questions that consider one feature at
a time

MLSC20 KVS 18

Age < 30?

Is a person fit?
Data: age, pizza, exercise

Eats a lot
of pizza Exercises?

Yes No

NoNoYes Yes

UnfitFit FitUnfit

Does a car have a high mileage?
Data: weight, horsepower

Weight =
heavy?

horsepower
< 86?

No Yes

No
Yes

High
mileage

High mileageLow mileage

Example source: https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb

https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb

Decision tree

MLSC20 KVS 19

• A decision tree maps input 𝑥 ∈ 𝑅𝑑 to
output 𝑦 using binary decision rules:

• Each node is the tree has a
splitting rule

• Each leaf node is associated with
an output value (outputs can
repeat)

• Each splitting rule compare a feature
to a threshold

• Using these splitting rules a path to a
leaf node gives the prediction

𝑥2 < 5

𝑥1 > 1.9 𝑥3 ≤ 2

Yes No

NoNoYes Yes

ො𝑦 = 0 ො𝑦 = 1

ො𝑦 = 1 ො𝑦 = 0

Example decision tree for binary class
classification with 3 dimensional features

Depth=2

Decision tree construction algorithm

MLSC20 KVS 20

1. Start with a single leaf node containing all data

2. Loop through the following steps:
• Pick the leaf to split that reduces uncertainty the most

• Pick the splitting rule for the chosen leaf node using the following
i. For each feature, check all possible splits and find the best split

ii. With the best split of each feature determined, pick the best feature

3. Continue splitting nodes (increasing depth of tree) until stopping
criteria is reached

Label/response of the leaf is majority of the data assigned to it

Decision tree: Solved example

MLSC20 KVS 21

𝑋1

𝑋2

Loop through the following:

• Pick the leaf to split that reduces
uncertainty the most

• Only one option to begin with

• Pick the best splitting rule for the
best feature for the chosen leaf
node

• Two options for features: 𝑥1
and 𝑥2

• Best for 𝑥1: 𝑥1 < 1.7

• Best for 𝑥2: 𝑥2 > 1.3

𝑥1 < 1.7

𝑥2 > 1.3

Decision tree: Solved example

MLSC20 KVS 22

𝑋1

𝑋2

• Pick the leaf to split

• Pick the best splitting rule for the best
feature
• Best for 𝑥1: 𝑥1 < 2.7
• Best for 𝑥2: 𝑥2 > 1.3

𝑥2 > 1.3

𝑥1 < 1.7

ො𝑦 = 0 ො𝑦 = 1

All points are
correctly classified

𝑥1 < 2.7

Decision tree: Solved example

MLSC20 KVS 23

𝑋1

𝑋2

𝑥1 < 1.7

ො𝑦 = 0

ො𝑦 = 1

All points are
correctly classified

𝑥1 < 2.7

𝑥2 > 1.3

ො𝑦 = 0

All points are
correctly classified• Best for 𝑥1: 𝑥1 < 2.7

• Best for 𝑥2: 𝑥2 > 1.8

𝑥2 > 1.8

Decision tree: Solved example

MLSC20 KVS 24

𝑋1

𝑋2

𝑥1 < 1.7

ො𝑦 = 0

ො𝑦 = 1

𝑥2 > 1.3

ො𝑦 = 0

𝑥1 < 2.7

ො𝑦 = 1

Depth=3

Decision tree: Advantages and limitations

MLSC20 KVS 25

Advantages:

• Non-linear decision boundaries

• Intuitive and easy to interpret

Limitations:

• Decision trees are prone to
overfitting

• Training error decreases as nodes
increase

• Testing error decreases and then
increases due to overfitting

Random forest – Bagging

MLSC20 KVS 26

• Use multiple decision trees, each trained with a subset of the training data

• Let training data have 𝑁 samples

• For each tree, randomly select 𝑁 samples (with replacement) from the
training data

• Repeat this for each tree

• Aggregate the decision from multiple trees for the final decision

Training data Bootstrap
sample 1

Bootstrap
sample 2

Bootstrap
sample 3

Random forest – random feature set

MLSC20 KVS 27

• At each split, only consider a random subset of 𝑚 features to choose the splitting rule

• 𝑚 should be specified; typically 𝑚 ≈ 𝑑 where 𝑑 is the dimensionality of the data

𝑥2 < 4 𝑥3 > 2

𝑥4 < 7

𝑥1 < 3

𝑥4 < 6 𝑥3 > 2

𝑥2 < 3

𝑥1 < 3

Decision tree Tree in Random Forest

Set of features

Random forest algorithm

MLSC20 KVS 28

Algorithm:

1. Draw a bootstrap sample (sample data with replacement) ℬ𝑏 of the same size
𝑁 from the training data

2. Train a tree 𝑓𝑏 on ℬ𝑏, where each split is computed as follows:

i. Randomly select 𝑚 dimensions of 𝑥 ∈ 𝑅𝑑, newly chosen for each splitting
rule

ii. Make the best split restricted to the subset of dimensions

Advantages

• Applicable to both regression and classification problems

• Handle categorial predictors naturally

• Computationally simple and quick to fit, even for large problems

• Can handle highly non-linear interactions and classification
boundaries

• Offers some interpretability; though not as interpretable as Decision
Trees

• Provides variable/feature importance

MLSC20 KVS 29

Questions?

MLSC20 KVS 30

