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What it takes to fly….

An airline firm is starting flights on a new 
route of 8000km. Since they have not flown 
flights at this distance before, they are 
unaware of amount of fuel needed. Fuel is 
expensive so it is important to as closely 
estimate the amount of fuel needed for the 
journey as possible. The airline firm has 
historical data from its other flights. Can they 
leverage that to find the fuel requirement? If 
yes, then how?

Image source: https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/aeroplane-design-and-engineering

Image source: https://www.vectorstock.com/royalty-free-vector/fuel-station-cartoon-silhouette-vector-15209899
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Past data on distance and fuel 

Red line represents the 
different fuel values for 
the distance the new 
flight will travel.

If we can find a function 
relating distance to fuel, 
then we are done.
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Linear regression

• Assume a linear relationship between distance (X) and fuel (Y)
• This is our model assumption

𝑌 = 𝛽𝑋 + 𝛼

• Is the above model sufficient 
to find relation between D and 
F?
• All the points are not collinear, 

so no solution exists for the 
above model

• Need something more….
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Noise
• There is some variation not 

explained by the model

• Variation is different for each sample

• If we had a random variable to 
account for this variation, our model 
could fit

• Above is called noise

• Could represent measurement error 
as well as variation from 
understood/unaccounted for 
variables

• Weather, number of passengers 
etc. Hypothetical linear relation between distance 

and fuel
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Linear regression 

Model with noise

𝑌 = 𝛽𝑋 + 𝛼 + ϵ

slope bias

noise
independent

dependent

• Noise 𝜖 ∼ 𝒩(0, 𝜎2) is Gaussian distributed with zero mean and variance 𝜎2

• Noise is independent of for each sample
• Variance of noise is the same for all values of X 
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How to find 𝛽 and 𝛼?

• Several different possibilities for 𝛽 and 𝛼; which is the best one?
• Could be one that maximizes the probability of observation the data
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Computing likelihood of the data

Say, 𝛽 = 2 and 𝛼 = 2, and training data is 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑁. What is 
the probability of data under the above model?

𝑝 𝑦1, 𝑦2, … , 𝑦𝑛 𝑥1, … , 𝑥𝑛; 𝛽 = 2, 𝛼 = 2

𝑌 = 𝛽𝑋 + 𝛼 + ϵ

=ෑ

𝑖=1

𝑛

𝑝 𝑦𝑖 𝑥𝑖; 𝛽 = 2, 𝛼 = 2

= 𝑝 𝑦1 𝑥1; 𝛽 = 2, 𝛼 = 2 𝑝 𝑦2 𝑥2; 𝛽 = 2, 𝛼 = 2 …𝑝(𝑦𝑛|𝑥𝑛; 𝛽 = 2, 𝛼 = 2)

Independence of the samples
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Computing likelihood of the data

What is  𝑝 𝑦𝑖 𝑥𝑖; 𝛽 = 2, 𝛼 = 2 ?

Probability density of observing 𝑌 = 𝑦𝑖 when 𝑋 = 𝑥𝑖 and 𝛽 = 2, 𝛼 = 2. 

𝑦𝑖 = 2𝑥𝑖 + 2 + ϵ

𝑦𝑖 ∼ 𝒩(2𝑥𝑖 + 2, 𝜎2)

𝑝 𝑦𝑖 𝑥𝑖; 𝛽 = 2, 𝛼 = 2 =
1

2𝜋𝜎2
exp −

𝑦𝑖 − 2𝑥𝑖 + 2
2

2𝜎2
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Computing likelihood of the data
Substituting, 

𝑝 𝑦1, 𝑦2, … , 𝑦𝑛 𝑥1, … , 𝑥𝑛; 𝛽 = 2, 𝛼 = 2 =ෑ

𝑖=1

𝑛
1

2𝜋𝜎2
exp −

𝑦𝑖 − 2𝑥𝑖 + 2
2

2𝜎2

Likelihood

Take log on both sides,

log(𝑝 𝑦1, 𝑦2, … , 𝑦𝑛 𝑥1, … , 𝑥𝑛; 𝛽 = 2, 𝛼 = 2 ) = log ෑ

𝑖=1

𝑛
1

2𝜋𝜎2
exp −

𝑦𝑖 − 2𝑥𝑖 + 2
2

2𝜎2

ℒ 𝛽 = 2, 𝛼 = 2 = −
𝑛

2
log 2𝜋𝜎2 −

𝑖=1

𝑛 𝑦𝑖 − 2𝑥𝑖 + 2
2

2𝜎2

Log-likelihoodMLSC20 KVS 10



Log likelihood of data
Above computation was for 𝛽 = 2, 𝛼 = 2. In general, 

ℒ 𝛽, 𝛼 = −
𝑛

2
log 2𝜋𝜎2 −

𝑖=1

𝑛 𝑦𝑖 − 𝛽𝑥𝑖 + 𝛼
2

2𝜎2

ℒ 3, 1

ℒ 1.2, 8

ℒ −3, 30
• ℒ 𝛽, 𝛼 gives the likelihood 

(probability) of observing the data 
for different values of 𝛽 and 𝛼

• Picking the best line is the same as 
choosing the values of 𝛽 and 𝛼 that 
maximizes ℒ 𝛽, 𝛼
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Calculating 𝛽 and 𝛼

𝛽∗, 𝛼∗ = argmax
𝛽,𝛼

ℒ 𝛽, 𝛼

= argmax
𝛽,𝛼

−
𝑛

2
log 2𝜋𝜎2 −

𝑖=1

𝑛 𝑦𝑖 − 𝛽𝑥𝑖 + 𝛼
2

2𝜎2

Find 𝛽 and 𝛼 that maximize ℒ 𝛽, 𝛼

= argmin
𝛽,𝛼

𝑛

2
log 2𝜋𝜎2 +

𝑖=1

𝑛 𝑦𝑖 − 𝛽𝑥𝑖 + 𝛼
2

2𝜎2

= argmin
𝛽,𝛼


𝑖=1

𝑛 𝑦𝑖 − 𝛽𝑥𝑖 + 𝛼
2

2𝜎2

max 𝑓 𝑥 = min−𝑓(𝑥)

𝑛

2
log 2𝜋𝜎2 is a constant
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Calculating 𝛽 and 𝛼

Find 𝛽 and 𝛼 that maximize ℒ 𝛽, 𝛼

𝛽∗, 𝛼∗ = argmin
𝛽,𝛼

1

2𝜎2


𝑖=1

𝑛

𝑦𝑖 − 𝛽𝑥𝑖 + 𝛼
2

Alternate interpretation: Minimize the squared error between the model 
prediction ( ො𝑦𝑖 = 𝛽𝑥𝑖 + 𝛼) and the ground truth (𝑦𝑖)
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Formula for 𝛽 and 𝛼

The optimization problem can be solved using standard tools from 
Calculus.

𝛽∗ =
𝑛 σ𝑖=1

𝑛 𝑥𝑖𝑦𝑖 − σ𝑖=1
𝑛 𝑥𝑖 ⋅ (σ𝑖=1

𝑛 𝑦𝑖)

𝑛 σ𝑖=1
𝑛 𝑥𝑖

2 − σ𝑖=1
𝑛 𝑥𝑖

2

𝛼∗ =
(σ𝑖=1

𝑛 𝑦𝑖) σ𝑖=1
𝑛 𝑥𝑖

2 − σ𝑖=1
𝑛 𝑥𝑖 σ𝑖=1

𝑛 𝑥𝑖𝑦𝑖

𝑛 σ𝑖=1
𝑛 𝑥𝑖

2 − σ𝑖=1
𝑛 𝑥𝑖

2

Substituting our training data in the above formulae, we get 𝛽 = 3.1, 𝛼 = 0.9
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Fuel to travel 8000km

• Substituting 𝑋 = 8 in the equation, we get

𝑌 = 3.1 × 8 + 0.9 = 25.7

• Fuel needed is 25.7 × 100kg
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Interpretation of the model

𝛽

1

𝑌 = 3.1𝑋 + 0.9

𝛽: 1000km increase in 
distance will require 
310kg more fuel

𝛼: Amount of fuel 
required to travel 0km is 
90 kg
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How well did the model fit: MSE

For point 𝑥𝑖
Prediction: ො𝑦𝑖
Ground truth: 𝑦𝑖
MSE: Mean squared error

1

𝑛


𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2
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How well did the model fit: 𝑅2

mean

𝑆𝑆𝑇 =
𝑖=1

𝑛

𝑦𝑖 − ത𝑦 2

ത𝑦 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖

ത𝑦

Error when prediction is ത𝑦 for all 
values of 𝑥 (Total Sum of 
Squares)

𝑆𝑆𝐸 =
𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

Error when prediction is ො𝑦𝑖
(Sum of Squared Error)

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
What is the interpretation of r-squared? 
Variance in data explained.
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Quick recap

• We started with one independent variable (𝑋; distance), one 
independent variable (𝑌; fuel)

• Model:

• Fit 𝛽 and 𝛼 according to the training data

• Interpret the model

• Evaluate the model fit: 

𝑌 = 𝛽𝑋 + 𝛼 + 𝜖

𝑌 = 𝛽𝑋 + 𝛼
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What it takes to fly….

Previous experience suggests that the amount 
of fuel depends on multiple factors:

• Distance

• Payload

• Pilot’s experience

How can this information be used to estimate 
the fuel requirement in the linear regression 
model?

Image source: https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/aeroplane-design-and-engineering

Image source: https://www.vectorstock.com/royalty-free-vector/fuel-station-cartoon-silhouette-vector-15209899
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Multivariate linear regression

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖

distance payload pilot’s experience

noise

• Regression coefficients and intercept (bias) are the model parameters
• Model fitting, interpretation, and evaluation is done in the same way as for 

univariate linear regression
• What information does comparison of regression coefficient provide?

Regression coefficients
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Interpreting regression coefficients

What do the coefficient values imply about the importance of different 
features in the fuel requirement?

𝑌 = 0.9 + 3.1𝑋1 + 0.8𝑋2 − 0.2𝑋3 + 𝜖

Assume that the features (independent variables) are in the same scale 
and the regression model after fitting to the training data gives:
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Logistic Regression
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Linear regression like model for classification…
• We got was a nice way of combining 

variables to get an output with linear 
regression
• Gave higher weight to more important 

features

• Importance was learned from the data

• Can a similar model wherein a linear 
combination of the features is taken be 
used in the classification setting?

• Challenge: 
• The output of linear regression lies 

between (−∞,∞)

• Classification is discrete and binary {0,1}

x

Y
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Ways to tackle the challenges…

Idea for solution to challenges

1. Relate the classification outcome to the result of a coin toss
• Example: assign label 0 if coin lands Tails and label 1 if coin lands Heads

2. Probability of the heads in the coin toss relates to the independent 
variables by a linear model
• We just need a way of converting the (−∞,∞) values to lie between (0,1)
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Logit function

f p = log
𝑝

1 − 𝑝

Image source: https://en.wikipedia.org/wiki/Logit

𝑓_𝑓 𝑝 = log
𝑝

1 − 𝑝

𝑝
Logit 
function

Logit function takes a value in (0,1) as 
input and outputs a value in (−∞,∞)

Consider,
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Logistic regression

Let 𝑝 = 𝑃 𝑌 = 1 𝑥

log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑥

Assume logit function is a linear 
function of independent variable 
(feature)

𝑝 =
1

1 + exp(−𝛽0 − 𝛽1𝑥)
𝛽0 + 𝛽1𝑥
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Multiple variables and training

If there are multiple features, the above equation can be easily 
extended. For example, with 3 features, 

𝑝 =
1

1 + exp(−𝛽0 − 𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑥3)

• Training the logistic regression classifier means finding the 
parameters 𝛽0, 𝛽1, … given training data (𝑋𝑖 , 𝑌𝑖) where 𝑋𝑖 =
[𝑥𝑖,1, 𝑥𝑖,2… ], 𝑖 = 1,… , 𝑛

• Standard optimization tools can be used to train the model
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Logistic regression example

Recall Ms. Orange Seller’s task of finding whether an orange is navel 
(label=1) or clementine (label=0). She trains a logistic regression model with 
size (𝑥1) and weight (𝑥2) as features. The trained model has regression 
coefficient 𝛽1 = 0.1, 𝛽2 = 0.2, 𝛽0 = −5.

What is 𝑃 𝑌 = 1 𝑋 ?

𝑃(𝑌 = 1|𝑋) =
1

1 + exp(− −5 + 0.1𝑥1 + 0.2𝑥2 )
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Logistic regression example

Recall Ms. Orange Seller’s task of finding whether an orange is navel 
(label=1) or clementine (label=0). She trains a logistic regression model with 
size (𝑥1) and weight (𝑥2) as features. The trained model has regression 
coefficient 𝛽1 = 0.1, 𝛽2 = 0.2, 𝛽0 = −5.

An orange has size=5 and weight=20 i.e., 𝑋 = [5, 20]. What type of orange is 
it?

𝑃 𝑌 = 1 𝑋 =
1

1 + exp − −5 + 0.1 × 5 + 0.2 × 20
= 0.38

𝑃 𝑌 = 0 𝑋 = 1 − 𝑃 𝑌 = 1 𝑋 = 0.62

𝑃 𝑌 = 0 𝑋 > 𝑃(𝑌 = 1|𝑋); so orange is label=0 i.e., clementine
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Logistic regression example

Recall Ms. Orange Seller’s task of finding whether an orange is navel 
(label=1) or clementine (label=0). She trains a logistic regression model with 
size (𝑥1) and weight (𝑥2) as features. The trained model has regression 
coefficient 𝛽1 = 0.1, 𝛽2 = 0.2, 𝛽0 = −5.

An orange has size=10 and weight=40 i.e., 𝑋 = [10, 40]. What type of orange 
is it?

𝑃 𝑌 = 1 𝑋 =
1

1 + exp − −5 + 0.1 × 10 + 0.2 × 40
= 0.98

𝑃 𝑌 = 1 𝑋 > 0.5; so orange is label=1 i.e., navel
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Questions?
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